
Open Source Telecom Gateway for Home
Automation

Dmitry Namiot Moscow State University, Moscow, Russia dnamiot@gmail.com
Manfred Sneps-Sneppe University of Latvia, Institute of Mathematics and Computer Science, Latvia
manfreds.sneps@gmail.com

Abstract – This paper describes a practical approach for
using telecom gateway in Home Automation. Our article
discusses the tasks and possible solutions, describes the
places for telecom services within the Home Automation
projects. Also we introduce a new approach for
developing telecom services with Asterisk and provide
Open Source implementation for this idea. The described
package has been used on practice for Smart Home
project on Latvia.

INTRODUCTION

This paper describes our vision for using telecom services
within the automation projects. It is based on our experience
in telecom area and practice we’ve got during the
implementation of Smart Home automation projects.

At the first hand let us clearly set the basic points for our
approach. At the first hand, we do believe into mashups
only. In other words all our past experience says that there is
no way for one system to support all of the tasks. No size fits
all. All the systems does not matter how they were planning
at the beginning finished as the some cooperation of the
services. The only successful projects were the projects
originally oriented (and developed as) to orchestration of the
services. At the second we do believe that time to market is
the most important factor during the development. It means
that we need to provide (to choose) the development tools
most developers are familiar with. There is almost no way to
convenience the developers start to lean completely new
API’s or development environments. At least it is too
complex task to be solved during the one project. We need
something that is simple, has got quick learning cycle and
could be used for the fast prototyping too.

Now let us describe the place for the telecom services within
the Home Automation projects. We can highlight two
possible areas: voice responses - e.g. using text to speech
service and explain measured data by voice as an answer to
user’s call and opposite task – using call as a switch
on/switch off command for our equipment. From our vision
it covers all the areas (the rest is simply a combination of
two methods).

As the next step let us describe our vision to computer
telephony and appropriate services. Technically we are
speaking of course about one simple thing – the ability to
catch the call and process it programmatically. Actually, it is
all. Let us see what can we do next. By our vision any (ok,
almost any, to be polite) telecom service could be presented
as a combination of the finite set of basic services. Let us
count them:

1) application accepts a call and hangup. For example
all the voting services (or switch in/switch off)
services look so. Just get a call (get A-number), do
some action on the server side and drop a call;

2) call redirection. Applications accepts a call, get a
new number by the own (e.g. some database
lookup) and redirects the incoming call to the new
destination;

3) media play. Just got a call and play some media file
(static or dynamic) in the answer

4) record media file. Just got a call and write the voice
to some file

5) DTMF recognition. Just get and recognize tone
signals from the line

On practice, it is all do we need. The vast majority of the
services are actually just a combination of the above 5. It is
not a big list actually, so we may expect that we will be able
to pickup an appropriate development tools for them.

BASIC TOOL

As a basic telecom-enablement tool for the Home
automation projects we choose Asterisk.

Asterisk is software that turns an ordinary computer into a
voice communications server. Asterisk powers IP PBX
systems, VoIP gateways, conference servers and more. It is
used by small businesses, large businesses, call centers,
carriers and governments worldwide. Asterisk is free and
open source.

As per official site Asterisk is often referred to as "the open
source PBX" and it's true that you can use Asterisk to build a
PBX. But a PBX is only one of many applications you can
build with Asterisk. Asterisk also is gateway, voice mail,
IVR etc.

One big advantage for the production is the fact that Asterisk
is quite popular, so it is not a niche solution used with one or
two projects only.

Asterisk has got open API too, so we can actually program
our own applications on it. And Asterisk’s API is enough to
implement the above mentioned basic services as well as the
combine them according our need.

But of course this API is just yet another API for the
developers. And it has got own price (complexity). So for
example Java developers we are traditionally working with
must study new things for programming Asterisk.

E.g. the easiest way to interact with Asterisk from Java
applications is via the FastAGI protocol. AGI scripts can
handle either incoming calls or calls originated via the
Manager API

The AGI (Asterisk Gateway Interface) facility allows you to
launch scripts, from the Asterisk dial plan. Traditionally
communication between the scripts and Asterisk was via
standard input and standard output and scripts had to run on
the same machine as Asterisk. Due to the large amount of
time a Java Virtual Machine needs for startup and the
discomfort of having to install a Java environment on the
PBX box(es) Java has not been the language of choice for
writing AGI scripts.

These drawbacks have been addressed by the addition of
FastAGI to Asterisk. FastAGI is basically AGI over TCP/IP
socket connections instead of using standard input and
standard output as communication medium.

Using FastAGI you can run a Java application (on the same
machine that runs Asterisk or on a separate machine) that is
only started once and serves AGI scripts until it is shut
down. Combined with Java's multithreading support you can
build pretty fast AGI scripts using this protocol.

Asterisk-Java helps you with running your Java based AGI
scripts by providing a container that receives connections
from the Asterisk server, parses the request and calls your
scripts mapped to the called URL.

It is actually quote from the original Java API manual. We
quote it here just for showing the level of problems
application developers will need to deal with during
accepting a new API. Actually it is not the Asterisk only
problem.

So our final problem is: yes, we have got an API that let us
implement the basic things, but the cost of that (not the
software performance but a cost for the development) is too
high. Especially if we will keep in mind that any hardware
related integration will require a constant
redevelopment/redesign for the software part.

The way we’ve decided to go is a new layer in the software
development architecture. We’ve suggested a new layer for
Asterisk development. But instead of introducing our own
API we’ve decided to go with HTTP.

In other words we’ve created HTTP gateway, that lets
developers talk with Asterisk via HTTP requests/responses.
And Asterisk related applications (scripts at the original)
becomes in this model just ordinary CGI scripts.

All the complexity for the above mentioned API’s,
protocols, managers etc. is hided within our gateway.
Application developer now is an ordinary web developer.
He/she can simply see a list parameters for incoming request
(parameters in HTTP request) as well as the format (list of
the parameters) for the response.

What kind of requests our gateway should support? For this
let us go back to our introduction. There is a list from the 5
basic services. They are basic things for our gateway too.

OUR IMPLEMENTATION

We propose to integrate a new component (proxy) into the
Asterisk platform. The main functionality of the proxy is to
translate telecommunication calls into HTTP requests to
external web services. Telecommunication services are
located separately from the PBX, while the information they
receive from Asterisk is presented as a HTTP-request.

Technically, HTTP GET/POST request is a request, in
which external telecommunications service passed
information about the subscriber's name - CallerIdName,
caller’s number - CallerIdNumber and called number -
Extension. Upon receiving necessary parameters, such as
(calling/called number) a web service produces and forwards
its instructions to the proxy. The latter receives and
translates them into Asterisk instructions. The development
of such services under the architecture described above is
similar to a conventional CGI-script, for which there is a
plenty of programming tools. As a result a programmer
doesn’t need to be familiar with the Asterisk API.

Originally this approach (map telecom events to HTTP) was
developed by D. Namiot (AbavaNet) and used to map INAP
and CSTA stuff into CGI requests.

A.Ustinov has done a first implementation for Astersik as
his master thesis in Moscow State University. On practice
this approach was used by Abava - telecom services for
smart house (M.Sneps, Latvia). Service receives a call, reads
data from water meter (M-Bus) and passes it via text to
speech service back to the user.

The following picture illustrates the common schema:

Figure 1
The schema

As seen the AGI-proxy component is at the heart of the
model. The AGI-proxy is a Java-based application
implemented on the basis of FastAGI, an open source
library. The AGI-proxy is installed directly on the PBX
Asterisk side.

In fact, the Asterisk represents the same thing for the AGI-
proxy, as the J2EE container does for a Java-servlet. All
calling messages produced by the Asterisk come to the
proxy within the method service with two parameters:
interfaces AgiRequest and AgiChannel. Through the first
parameter one can get the information about the calls (caller
name / number, called number, context of the call, feed
settings, etc.) and through the second one the interaction
with the Asterisk is carried out (call termination, transfer
mode and etc.).

Subscriber’s name (CallerIdName), caller’s number
(CallerIdNumber) and called number (Extension) are
wrapped within a string-parameter by the AGI-proxy. Then
the AGI-proxy executes an HTTP request on its behalf to an
external web service, whose URL is set in the configuration.
The response from the invoked service is seen as an
indication to what to do with the call. The call may be
terminated or redirected to a specified number; a media file
may be played etc.

Under this architecture the sequence of calls is reduced to a
very simple diagram.

Figure 2
Call flow

Source code and files necessary to install the demonstration
examples are available here:
http://code.google.com/p/asterisk-web-gate/.

CONCLUSION

With this tool we’ve replaced the traditional telecom
programming with web programming. And we can list here
at least the following results:
- the entry barrier for programmers of new
telecommunication services becomes much more lower.
Obviously, there are more web programmers than telecom
programmers
- now we have the possibility to develop services using
various technologies, such as CGI, JSP, ASP.NET.
- it is possible to integrate new external services without any
changes on the PBX side.

References

[1] http://www.asterisk.org/ - Asterisk

[2] http://asterisk-java.org/- Java Asterisk API

[3] http://asterisk.linkstore.ru Web gate for Asterisk

